The effects of urapidil on thermoregulatory thresholds in volunteers.
نویسندگان
چکیده
UNLABELLED In a previous study we have shown that the antihypertensive drug, urapidil, stops postanesthetic shivering. One possible mechanism in the inhibition of postanesthetic shivering by urapidil may be alterations in thermoregulatory thresholds. We therefore studied the effects of urapidil on vasoconstriction and shivering thresholds during cold-induced shivering in volunteers. Seven healthy male volunteers were cooled by an infusion of saline at 4 degrees C on two study days separated by 48 h. Thermoregulatory vasoconstriction was estimated using forearm minus fingertip skin-temperature gradients, and values exceeding 0 degrees C were considered to represent significant vasoconstriction. The rectal core temperatures at the beginning of shivering and at vasoconstriction were considered the thermoregulatory thresholds. Before cooling, either 25 mg of urapidil or placebo was administered randomly and blindly to each volunteer. When shivering occurred continuously for 10 min, another 25 mg of urapidil was administered IV to completely stop shivering. Urapidil led to a decrease in core temperature at vasoconstriction and shivering threshold by 0.4 degrees C plus/minus 0.2 degrees C (P < 0.001) and 0.5 degrees C plus/minus 0.3 degrees C (P < 0.01), respectively. Oxygen consumption increased during shivering by 70% plus/minus 30% (P < 0.01) in comparison with baseline and decreased levels after shivering stopped, despite the continued low core temperature. Our investigation shows that urapidil stops postanesthetic shivering by decreasing important thermoregulatory thresholds. This means that shivering, not hypothermia, is treated, and hypothermia will need more attention in the postanesthesia care unit. IMPLICATIONS In this study we show that the antihypertensive drug urapidil stops cold-induced shivering and decreases normal thermoregulatory responses, i.e., the thresholds for vasoconstriction and shivering, in awake volunteers.
منابع مشابه
Thermoregulatory response thresholds during spinal anesthesia.
Reportedly, during spinal anesthesia, the shivering threshold is reduced approximately 1 degree C but the vasoconstriction threshold remains normal. Such divergence between the shivering and vasoconstriction thresholds is an unusual pattern of thermoregulatory impairment and suggests that the mechanisms of impairment during regional anesthesia may be especially complex. Accordingly, we sought t...
متن کاملTramadol reduces the sweating, vasoconstriction, and shivering thresholds.
UNLABELLED The analgesic tramadol inhibits the neuronal reuptake of norepinephrine and 5-hydroxytryptamine, facilitates 5-hydroxytryptamine release, and activates mu-opioid receptors. Each of these actions is likely to influence thermoregulatory control. We therefore tested the hypothesis that tramadol inhibits thermoregulatory control. Eight volunteers were evaluated on four study days, on whi...
متن کاملThermoregulatory responses to RF energy absorption.
This white paper combines a tutorial on the fundamentals of thermoregulation with a review of the current literature concerned with physiological thermoregulatory responses of humans and laboratory animals in the presence of radio frequency (RF) and microwave fields. The ultimate goal of research involving whole body RF exposure of intact organisms is the prediction of effects of such exposure ...
متن کاملThermoregulatory vasoconstriction during propofol/nitrous oxide anesthesia in humans: threshold and oxyhemoglobin saturation.
To determine the thermoregulatory effects of propofol and nitrous oxide, we measured the threshold for peripheral vasoconstriction in seven volunteers over a total of 13 study days. We also evaluated the effect of vasoconstriction on oxyhemoglobin saturation (SpO2). Anesthesia was induced with an intravenous bolus dose of propofol (2 mg/kg), followed by an infusion of 180 micrograms.kg-1 x min-...
متن کاملMidazolam minimally impairs thermoregulatory control.
Perioperative hypothermia usually results largely from pharmacologic inhibition of normal thermoregulatory control. Midazolam is a commonly used sedative and anesthetic adjuvant whose thermoregulatory effects are unknown. We therefore tested the hypothesis that midazolam administration impairs thermoregulatory control. Eight volunteers were studied on 2 days each, once without drug and once at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesia and analgesia
دوره 94 3 شماره
صفحات -
تاریخ انتشار 2002